Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Immunol ; 15: 1298471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633263

RESUMEN

Introduction: In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods: A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results: Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion: Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Medicamentos Herbarios Chinos , Vacunas de Productos Inactivados , Adulto , Humanos , Animales , Ratones , Interleucina-6 , Pandemias , SARS-CoV-2 , Inmunoglobulina G , Inmunoglobulina M
2.
J Chromatogr A ; 1724: 464915, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663319

RESUMEN

Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 µg L-1), low limits of detection (1.4-35 µg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.


Asunto(s)
Medicamentos Herbarios Chinos , Límite de Detección , Extracción en Fase Sólida , Zearalenona , Cromatografía Líquida de Alta Presión/métodos , Zearalenona/análisis , Zearalenona/química , Zearalenona/aislamiento & purificación , Extracción en Fase Sólida/métodos , Adsorción , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicina Tradicional China , Porosidad , Nanopartículas de Magnetita/química
3.
Environ Sci Pollut Res Int ; 30(52): 112686-112694, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837593

RESUMEN

Eutrophication is a severe worldwide concern caused by excessive phosphorus release. Thus, significant efforts have been made to develop phosphorus removal techniques, particularly by nanomaterial adsorption. However, because of the limitations associated with nanoparticles including easy agglomeration, and separation challenges, a novel nanocomposite adsorbent with great adsorption performance is urgently required. A sponge adsorbent (MS-CMC@La) was developed in this study to remove phosphorus using melamine sponge (MS), LaCl3, and sodium carboxymethyl cellulose (CMC). The results of SEM/EDS, FTIR, and XPS demonstrated that La was well-dispersed on MS-CMC@La. Adsorption isotherm and kinetics met with the Langmuir model (R2 = 0.981) and the pseudo-second-order kinetics (R2 = 0.989), respectively. The maximum adsorption capacity of MS-CMC@La was found to be 15.28 mg/g; the material exhibited excellent selectivity toward phosphorus in the presence of coexisting anion except of F-; the adsorption behavior was greatly impacted by pH. Furthermore, the electrostatic attraction, ligand exchange and inner-sphere coordination regulate the phosphate adsorption mechanism, with inner-sphere coordination dominating. In summary, the nano-enriched materials developed in this study are capable of facilitating the application of functionalized sponges in the field of wastewater.


Asunto(s)
Lantano , Contaminantes Químicos del Agua , Fósforo , Fosfatos , Aguas Residuales , Adsorción , Cinética , Concentración de Iones de Hidrógeno
4.
Nutrients ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37432306

RESUMEN

Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber-DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD.


Asunto(s)
Inflamación , Hepatopatías Alcohólicas , Estrés Oxidativo , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Etanol/toxicidad , Inflamación/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Animals (Basel) ; 13(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36899759

RESUMEN

Internal egg and eggshell quality are often deteriorated in aging laying hens, which causes huge economic losses in the poultry industry. Selenium yeast (SY), as an organic food additive, is utilized to enhance laying performance and egg quality. To extend the egg production cycle, effects of selenium yeast supplementation on egg quality, plasma antioxidants and selenium deposition in aged laying hens were evaluated. In this study, five hundred and twenty-five 76-week-old Jing Hong laying hens were fed a selenium-deficient (SD) diet for 6 weeks. After Se depletion, the hens were randomly divided into seven treatments, which included an SD diet, and dietary supplementation of SY and sodium selenite (SS) at 0.15, 0.30, and 0.45 mg/kg to investigate the effect on egg quality, plasma antioxidant capacity, and selenium content in reproductive organs. After 12 weeks of feeding, dietary SY supplementation resulted in higher eggshell strength (SY0.45) (p < 0.05) and lower shell translucence. Moreover, organs Se levels and plasma antioxidant capacity (T-AOC, T-SOD, and GSH-Px activity) were significantly higher with Se supplementation (p < 0.05). Transcriptomic analysis identified some key candidate genes including cell migration inducing hyaluronidase 1 (CEMIP), ovalbumin (OVAL), solute carrier family 6 member 17 (SLC6A17), proopiomelanocortin (POMC), and proenkephalin (PENK), and potential molecular processes (eggshell mineralization, ion transport, and eggshell formation) involved in selenium yeast's effects on eggshell formation. In conclusion, SY has beneficial functions for eggshell and we recommend the supplementation of 0.45 mg/kg SY to alleviate the decrease in eggshell quality in aged laying hens.

6.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6183-6190, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36471943

RESUMEN

Taking lipophagy as the breakthrough point, we explored the mechanism of Zexie Decoction(ZXD) in improving lipid metabolism in the hepatocyte model induced by palmitic acid(PA) and in the animal model induced by high-fat diet(HFD) on the basis of protein kinase B(Akt)/transcription factor EB(TFEB) signaling pathway. Co-localization was carried out for the microtubule-associated protein light chain 3(LC3) plasmid labeled with green fluorescent protein(GFP) and lipid droplets(LDs), and immunofluorescence co-localization for liver LC3 of HFD mice and perilipin 2(PLIN2). The results showed that ZXD up-regulated the expression of LC3, reduced lipid accumulation in hepatocytes, and increased the co-localization of LC3 and LDs, thereby activating lipo-phagy. Western blot results confirmed that ZXD increased autophagy-related protein LC3Ⅱ/LC3Ⅰ transformation ratio and lysosome-associated membrane protein 2(LAMP2) in vivo and in vitro and promoted the degradation of sequestosome-1(SQSTM1/p62)(P<0.05). The results above jointly explained that ZXD regulated lipophagy. Furthermore, ZXD activated TFEB expression(P<0.05) and reversed the PA-and HFD-induced decrease of TFEB nuclear localization in hepatocytes(P<0.05). Meanwhile, ZXD activated liver TFEB to up-regulate the expression of the targets Lamp2, Lc3 B, Bcl2, and Atg5(P<0.05). Additionally, ZXD down-regulated the protein level of p-Akt upstream of TFEB in vivo and in vitro. In conclusion, ZXD may promote lipophagy by regulating the Akt/TFEB pathway.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Hepatocitos , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Autofagia/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología
7.
Anim Nutr ; 10: 124-136, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35663374

RESUMEN

The declines in laying performance during the late production period have adverse effects on the length of the production cycle. Improving the nutrition of laying hens is a crucial measure to reverse this declination. This study investigated the effect of selenium yeast (SY) on egg production, ileal gene expression and microbiota, as well as elucidating their associations in aged laying hens. A total of 375 Jinghong laying hens at 76 weeks old were randomly assigned into 5 dietary treatments, which included a selenium-deficient basal diet based on corn-soybean meal, and dietary supplementation of SY at 0.15, 0.30 and 0.45 mg/kg, and sodium selenite at 0.45 mg/kg. The results showed that SY ameliorated the depression in aged laying performance in the 0.30 mg/kg group (P < 0.01). Selenium yeast significantly increased ileum selenium concentration (P < 0.05), and SY groups had higher selenium deposition efficiency than the sodium selenite group. Functional enrichment and Short Time-series Expression Miner (STEM) analysis indicated that SY activated metabolic progress (e.g., glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism), immune response and oxidative stress response. Four hub genes including thioredoxin reductase 1 (TXNRD1), dihydrolipoamide dehydrogenase (DLD), integrin linked kinase (ILK) and leucine zipper tumor suppressor 2 (LZTS2) were involved in intestinal metabolism which was closely associated with selenium deposition/status. Moreover, the relative abundance of Veillonella, Turicibacter and Lactobacillus was significantly increased, but the relative abundance of Stenotrophomonas was significantly decreased by SY supplementation. Multi-omics data integration and Canonical correspondence analysis (CCA) showed that both the ileum selenium content and the laying rate were highly correlated with pathways and bacteria enriched in metabolism and immune response. Meanwhile, the "switched on" gene prostate stem cell antigen (PSCA) had a positive relationship with Veillonella and a negative relationship with the opportunistic pathogens Stenotrophomonas. Overall, our study offered insight for the further exploration of the role of SY on boosting egg production and balancing ileum intestinal flora in aged laying hens.

8.
Front Pharmacol ; 13: 903259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770084

RESUMEN

Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.

9.
Zhongguo Zhong Yao Za Zhi ; 47(2): 453-460, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178989

RESUMEN

The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1ß, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Alanina Transaminasa/metabolismo , Animales , Dieta Alta en Grasa , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma
10.
J Ethnopharmacol ; 290: 115101, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35151834

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zexie Tang (ZXT), only two consists with Alismatis Rhizoma (AR) and Atractylodes macrocephala Rhizoma (AM), a classical Chinese medicine formula from Synopsis of the Golden Chamber with a history of 2000 years. Clinical observation in recent years has found that ZXT has excellent lipid-lowering effect. AIM OF THE STUDY: To explore the potential mechanism of ZXT ameliorates hyperlipidemia based on FKBP38/mTOR/SREBPs pathway. MATERIALS AND METHODS: WD-induced hyperlipidemia mice and oleic acid induced cell lipid accumulation model were used to investigate pharmacodynamic. The effect of ZXT on the transcriptional activity of SREBPs was detected by reporter gene assay. Proteins and downstream genes of mTOR/SREBPs pathway were detected in vivo and in vitro. Combined with network pharmacology and HPLC-Q-TOF/MS, the active ingredients were screened and identified. The interaction between active compounds of ZXT and FKBP38 protein were analyzed by docking analysis. RESULTS: ZXT decreased TC, TG and LDL-c levels in blood of WD-induced hyperlipidemia mouse model, and improved insulin resistance in vivo. ZXT also reduced TC, TG and lipid accumulation in cells line, and inhibited SREBPs luciferase activity, protein and its target genes expression such as FASN, HMGCR, etc. Meanwhile, ZXT inhibited protein expression levels of p-mTOR, p-S6K, etc in vitro and in vivo. Combined with network pharmacology and HPLC-Q-TOF/MS, 16 active ingredients were screened and identified. Docking results showed that active compounds of ZXT binding to FKBP38 and formed hydrogen bond. CONCLUSION: Our findings highlighted that ZXT ameliorates hyperlipidemia, in which FKBP/mTOR/SREBPs pathway might be the potential regulatory mechanism.


Asunto(s)
Hiperlipidemias/patología , Lípidos/sangre , Extractos Vegetales/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Proteínas de Unión a Tacrolimus/efectos de los fármacos , Alismatales , Animales , Atractylodes , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Farmacología en Red
11.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884815

RESUMEN

BACKGROUND: New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS: Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS: An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 µM vs. 17 µM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 µM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 µM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 µM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS: RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Hierro/metabolismo , Citrato de Sodio/farmacología , Vibrio parahaemolyticus/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cinamatos/química , Cinamatos/metabolismo , Depsidos/química , Depsidos/metabolismo , Sinergismo Farmacológico , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Unión Proteica , Vibrio parahaemolyticus/metabolismo , Ácido Rosmarínico
12.
Microb Biotechnol ; 14(5): 1961-1975, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34231972

RESUMEN

The effect of a microbial consortium-based (MCB) biocontrol product, composed of Bacillus subtilis, Trichoderma harzianum strain and diatomaceous earth as a carrier, on potato yield, and potential modes of action for its effect were investigated. The MCB product (300 kg ha-1 ) was added to furrows in which the potato seed tubers each year for 3 years (2016, 2017 and 2018), while potato planting without the MCB product treatment served as the control. A metagenomic analysis indicated that bacterial phylotypes dominated the microbial community, with a relatively small contribution of archaea and fungal taxa. The relative abundance of beneficial bacterial taxa increased significantly in response to the MCB product treatment. Notably, a higher relative abundance of bacterial taxa with carbon fixation, carbon-degrading and nitrogen metabolism properties were observed in the MCB product-treated potato rhizosphere. This was also reflected in the identification of a greater abundance of genes encoding enzymes involved in nitrogen metabolism, carbon fixation and carbon degradation pathways in the conducted metagenomic analysis. The greater relative abundance of these beneficial bacterial taxa in the rhizosphere of MCB product-treated plots, as well as the higher abundance of genes associated with the indicated cellular processes, were associated with an increase in tuber yield. The observed changes in microbial community structure at an early stage of tuber development appears to have a beneficial impact on tuber yield.


Asunto(s)
Rizosfera , Solanum tuberosum , Bacterias/genética , Carbono , Hypocreales , Consorcios Microbianos , Nitrógeno , Microbiología del Suelo
13.
J Ethnopharmacol ; 267: 113383, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918992

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY: As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS: A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS: We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS: We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Sistema Nervioso Central/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Animales , Conducta Animal/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Modelos Animales , Pez Cebra
14.
Microb Pathog ; 112: 30-37, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28942173

RESUMEN

Manganese transport protein C (MntC) of Staphylococcus aureus represents an excellent vaccine-candidate antigen. The important role of CD4+ T cells in effective immunity against S. aureus infection was shown; however, CD4+ T cell-specific epitopes on S. aureus MntC have not been well identified. Here, we used bioinformatics prediction algorithms to evaluate and identify nine candidate epitopes within MntC. Our results showed that peptide M8 emulsified in Freund's adjuvant induced a much higher cell-proliferation rate as compared with controls. Additionally, CD4+ T cells stimulated with peptide M8 secreted significantly higher levels of interferon-γ and interleukin-17A. These results suggested that peptide M8 represented an H-2d (I-E)-restricted Th17-specific epitope.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/aislamiento & purificación , Manganeso/metabolismo , Proteína C/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Algoritmos , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Mapeo Epitopo , Escherichia coli/genética , Femenino , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos BALB C , Proteína C/genética , Proteína C/inmunología , Estructura Secundaria de Proteína , Proteínas Recombinantes/inmunología , Infecciones Estafilocócicas/inmunología , Células TH1/inmunología , Células Th17/inmunología
15.
Front Plant Sci ; 7: 361, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047528

RESUMEN

Ethylene, the first known gaseous phytohormone, is involved in plant growth, development as well as responses to environmental signals. However, limited information is available on the role of ethylene in endophytic fungi induced secondary metabolites biosynthesis. Atractylodes lancea is a traditional Chinese herb, and its quality depends on the main active compounds sesquiterpenoids. This work showed that the endophytic fungus Gilmaniella sp. AL12 induced ethylene production in Atractylodes lancea. Pre-treatment of plantlets with ethylene inhibiter aminooxyacetic acid (AOA) suppressed endophytic fungi induced accumulation of ethylene and sesquiterpenoids. Plantlets were further treated with AOA, salicylic acid (SA) biosynthesis inhibitor paclobutrazol (PAC), jasmonic acid inhibitor ibuprofen (IBU), hydrogen peroxide (H2O2) scavenger catalase (CAT), nitric oxide (NO)-specific scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO). With endophytic fungi inoculation, IBU or PAC did not inhibit ethylene production, and JA and SA generation were suppressed by AOA, showing that ethylene may act as an upstream signal of JA and SA pathway. With endophytic fungi inoculation, CAT or cPTIO suppressed ethylene production, and H2O2 or NO generation was not affected by 1-aminocyclopropane-1-carboxylic acid (ACC), showing that ethylene may act as a downstream signal of H2O2 and NO pathway. Then, plantlets were treated with ethylene donor ACC, JA, SA, H2O2, NO donor sodium nitroprusside (SNP). Exogenous ACC could trigger JA and SA generation, whereas exogenous JA or SA did not affect ethylene production, and the induced sesquiterpenoids accumulation triggered by ACC was partly suppressed by IBU and PAC, showing that ethylene acted as an upstream signal of JA and SA pathway. Exogenous ACC did not affect H2O2 or NO generation, whereas exogenous H2O2 and SNP induced ethylene production, and the induced sesquiterpenoids accumulation triggered by SNP or H2O2 was partly suppressed by ACC, showing that ethylene acted as a downstream signal of NO and H2O2 pathway. Taken together, this study demonstrated that ethylene is an upstream signal of JA and SA, and a downstream signal of NO and H2O2 signaling pathways, and acts as an important signal mediating sesquiterpenoids biosynthesis of Atractylodes lancea induced by the endophytic fungus.

16.
Planta ; 244(3): 699-712, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27125387

RESUMEN

MAIN CONCLUSION: Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse interactions among different plants and their endophytes.


Asunto(s)
Atractylodes/metabolismo , Endófitos/fisiología , Aceites Volátiles/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Pseudomonas fluorescens/fisiología , Ácido Abscísico/metabolismo , Atractylodes/crecimiento & desarrollo , Atractylodes/microbiología , Biomasa , Brasinoesteroides/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Giberelinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA